First record of *Paratelenomus saccharalis* (Dodd, 1914) (Hymenoptera: Scelionidae) a natural enemy of the invasive species *Brachyplatys subaeneus* (Westwood, 1837) (Heteroptera: Plataspidae) in Panama and the Neotropical region

Jean Carlos Abrego L.
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología, Zoology Department
Ciudad de Panamá, Panamá

José A. Rivera
Universidad de Panamá, Museo de Invertebrados G.B. Fairchild (MIUP),
Ciudad de Panamá, Panamá

Carlos Vargas H.
Universidad de Panamá, Museo de Invertebrados G.B. Fairchild (MIUP),
Ciudad de Panamá, Panamá

Anette Garrido
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología,
Genetics and Molecular Biology Department,
Ciudad de Panamá, Panamá

Julio Gutiérrez L.
Universidad de Panamá, Museo de Invertebrados G.B. Fairchild (MIUP),
Ciudad de Panamá, Panamá

Miguel A. Osorio-Arenas
University of Buenos Aires, Department of Ecology, Genetics and Evolution,
Buenos Aires, Argentina

Pedro A. Arauz L.
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología,
Genetics and Molecular Biology Department,
Ciudad de Panamá, Panamá

Luis A. Jaén
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología,
Genetics and Molecular Biology Department,
Ciudad de Panamá, Panamá

Rubén Collantes G.
Instituto de Investigación Agropecuaria de Panamá (IDIAP),
Ciudad de Panamá, Panamá

Alonso Santos-Murgas
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología, Zoology Department,
Ciudad de Panamá, Panamá

Date of issue: October 13, 2023

Center for Systematic Entomology, Inc., Gainesville, FL

Published on October 13, 2023 by Center for Systematic Entomology, Inc.
P.O. Box 141874
Gainesville, FL 32614-1874 USA
http://centerforsystematicentomology.org/

Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology.

Guidelines and requirements for the preparation of manuscripts are available on the Insecta Mundi website at http://centerforsystematicentomology.org/insectamundi/

Chief Editor: David Plotkin, insectamundi@gmail.com
Assistant Editor: Paul E. Skelley, insectamundi@gmail.com
Layout Editor: Robert G. Forsyth
Editorial Board: Davide Dal Pos, M. J. Paulsen, Felipe Soto-Adames
Founding Editors: Ross H. Arnett, Jr., J. H. Frank, Virendra Gupta, John B. Heppner, Lionel A. Stange, Michael C. Thomas, Robert E. Woodruff
Review Editors: Listed on the Insecta Mundi webpage

Printed copies (ISSN 0749-6737) annually deposited in libraries
Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
The Natural History Museum, London, UK
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

Electronic copies (online ISSN 1942-1354) in PDF format
Archived digitally by Portico
Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi
University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/
Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240

This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
https://creativecommons.org/licenses/by-nc/3.0/
First record of *Paratelenomus saccharalis* (Dodd, 1914) (Hymenoptera: Scelionidae) a natural enemy of the invasive species *Brachyplatys subaeneus* (Westwood, 1837) (Heteroptera: Plataspidae) in Panama and the Neotropical region

JeanCarlos Abrego L.
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología, Zoology Department
Ciudad de Panamá, Panamá
jeanscarlos1705@gmail.com

José A. Rivera
Universidad de Panamá, Museo de Invertebrados G.B. Fairchild (MIUP),
Ciudad de Panamá, Panamá
Carlos Vargas H.
Universidad de Panamá, Museo de Invertebrados G.B. Fairchild (MIUP),
Ciudad de Panamá, Panamá

Anette Garrido
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología,
Genetics and Molecular Biology Department,
Ciudad de Panamá, Panamá

Julio Gutiérrez L.
Universidad de Panamá, Museo de Invertebrados G.B. Fairchild (MIUP),
Ciudad de Panamá, Panamá

Miguel A. Osorio-Arenas
University of Buenos Aires, Department of Ecology, Genetics and Evolution,
Buenos Aires, Argentina

Pedro A. Arauz L.
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología,
Genetics and Molecular Biology Department,
Ciudad de Panamá, Panamá

Luis A. Jaén
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología,
Genetics and Molecular Biology Department,
Ciudad de Panamá, Panamá

Rubén Collantes G.
Instituto de Investigación Agropecuaria de Panama (IDIAP),
Ciudad de Panamá, Panamá

Alonso Santos-Murgas
Universidad de Panamá, Facultad de Ciencias Naturales Exactas y Tecnología, Zoology Department,
Ciudad de Panamá, Panamá
santosmurgasa@gmail.com

Abstract. *Paratelenomus saccharalis* (Dodd) (Hymenoptera: Scelionidae) parasitizing *Brachyplatys subaeneus* (Westwood) eggs is reported for the first time for Panama. *Brachyplatys subaeneus* is an invasive species from Asia and is regarded as an important agricultural pest in the Americas.

Key words. *Cajanus cajan*, biological control, invasive species.

Resumen. Se reporta por primera vez para Panamá a *Paratelenomus saccharalis* (Dodd) (Hymenoptera: Scelionidae) parasitando huevos de *Brachyplatys subaeneus* (Westwood). *Brachyplatys subaeneus* es una especie invasora de Asia y una posible plaga para la agricultura en América.

Palabras claves. *Cajanus cajan*, control biológico, especie invasora.

ZooBank registration. urn:lsid:zoobank.org:pub:CD3639E3-2A17-44D8-B73C-CA71C779BCCA
Introduction

The family Plataspidae (Hemiptera: Heteroptera) contains 66 genera and 606 species described (Rider et al. 2018), all distributed in the Old World, with the greatest diversity in Asia and Africa. Within this family, the genus *Brachyplatys* Boisduval, 1835 (Heteroptera: Plataspidae) has an Asian distribution with about 50 described species.

The species *Brachyplatys subaeneus* (Westwood, 1837) is distributed in the Indo-Malay biogeographic region, being reported from Bangladesh, Cambodia, China, the Philippines, India, Indonesia, Japan, Malaysia, Myanmar, Singapore, Sri Lanka, Thailand, Taiwan, and Vietnam, and is apparently restricted to tropical and subtropical humid deciduous forests (Rédei 2016). *Brachyplatys subaeneus* has been reported in the Americas from Panama (Aiello et al. 2016), the Dominican Republic (Pérez-Gelabert et al. 2019), Costa Rica (Carmona-Ríos 2019), Ecuador (Añino et al. 2020), and the United States (Eger et al. 2020).

In Panama, *B. subaeneus* was initially identified using molecular methods by Aiello et al. (2016) as *Brachyplatys vahlii* (Fabricius, 1787). However, Rédei (2016) correctly identified the species morphologically as *B. subaeneus*. This invasive species is a pest in various legume crops (Fabaceae), including *Cajanus cajan* (L.) Huth. (Fabaceae), and because it lacks natural enemies in Latin America, could multiply exponentially, affecting legumes on a wide scale (Eger et al. 2020). More research is needed on this crop (Gálvez et al. 2022). A recent survey of pests in *Cajanus cajan* discovered an egg parasitoid of *B. subaeneus*. Johnson (1996) reported known hosts for an egg parasitoid, *Paratelenomus saccharalis* (Dodd, 1914) (Hymenoptera: Scelionidae), which includes *Brachyplatys subaeneus* and *Megacopta cribraria* (Fabricius, 1798) (Heteroptera: Plataspidae).

The objective of this paper is to report on an egg parasitoid of *Brachyplatys subaeneus* in Panama, and to recommend it as a potential biological control agent for this species.

Materials and Methods

The study was conducted in *Cajanus cajan* fields located at the mangrove forests of Panama Bay, Don Bosco, Juan Díaz, Panama, Panama (9°00’57.6″N, 79°25’12.5″W) (Fig. 1), on April 13, 2022. Biological observations were performed on about 10 plants, which were infested by *Brachyplatys subaeneus*. The presence of eggs, nymphs and adults was observed, and 20–25 branches of *Cajanus cajan* were collected. Subsequently, the branches were brought into the Laboratorio de artrópodos venenosos del Museo de Invertebrados G. B. Fairchild de la Universidad de Panamá for processing and monitoring the insect’s development.

Insect breeding cages were used to maintain the material. Branches with eggs were placed in controlled experimental conditions of humidity and temperature. The eggs were incubated at 25 ± 2°C with a photoperiod of 12:12 and checked every 24 hours. Emerging parasitoids were preserved in 70% ethanol and identified using the key of Johnson (1996). Specimens from this study are deposited in the G. B. Fairchild Invertebrate Museum of the University of Panama (MIUP).

Results

Brachyplatys subaeneus (Westwood, 1837) (Fig. 2A)

Eggs have an oval base and a flattened top, are white, and have an average size of 0.72 ± 0.03 mm long (n = 300) (Fig. 2B). Egg masses average 14 ± 5.2 eggs per mass, with a total of 55 eggs observed to be parasitized (= 5.7%). From these 55 eggs, parasitoid wasps of the species *Paratelenomus saccharalis* were obtained: 41 hatched and 14 unhatched (Fig. 3).

Paratelenomus saccharalis (Dodd, 1914) (Fig. 4)

New record. PANAMA – Panama • Juan Díaz, Don Bosco; 9°00’57.6″N 79°25’12.5″W; 13.IV.2022; Santos M. & Abrego leg. 28 ♀, 13♂. [MIUP-001-SCE-2022].
Paratelenomus saccharalis in Panama

Distribution. Widely distributed throughout eastern Palaearctic (Ruberson et al. 2013), it was reported in the Holarctic-Neotropical region specifically in the southeastern USA by Gardner et al. (2013; Alabama, Georgia) and Medal et al. (2015; Florida). For Panama, this is a new country record and the first for the Neotropics.

Discussion

Paratelenomus saccharalis is a parasitoid wasp of plataspid eggs and is known to develop on eggs of Megacopta cribraria and Brachyplatys subaeneus in Asia, and Coptosoma scutellatum (Geoffrey) in Italy (Ruberson et al. 2013). In the Americas, Paratelenomus saccharalis has been documented in the USA (Gardner et al. 2013; Medal et al. 2015) as an egg parasitoid of Megacopta cribraria. However, this is the first official record of P. saccharalis as an egg parasitoid of Brachyplatys subaeneus in Panama.

Figure 1. Collection site of Brachyplatys subaeneus (Westwood) eggs in Panama.

Figure 2. Brachyplatys subaeneus (Westwood) eggs. A) Adult laying eggs on Cajanus cajan. B) Eggs after hatching, dorsal-lateral view.
In the Neotropical region and in Panamá, to have parasitoids for potential use as biological control agents against pests like *B. subaeneus* is strategic, due to the socioeconomical importance of crops like *Cajanus cajan*. Ruberson et al. (2013) indicated *Paratelenomus saccharalis* as a specialist attacking eggs of the Plata spindle. We hypothesize the parasitoid entered Panama via port entry like *Brachyplatys subaeneus*.

Specialist parasitoids are important drivers of population dynamics, as supported both by applied biological control studies (Murdoch et al. 1985; Snyder and Ives 2001; Kenis et al. 2017) with population studied on a long-term basis (Berryman 1996; Tanhuanpaa et al. 1999; Myers and Cory 2013), and by theoretical models (Tanhuanpaa et al. 1999; Hassell 2000; Ruohomaki et al. 2000). Specialist parasitoids are a good ally to confront recent invasive species along with other regulatory activities (Heimpel and Mills 2017; Myers 2018).

Classical biological control focused on the role of introduced specialist enemy. However, many current studies suggest both specialist parasitoids and generalist predators can affect population dynamics of many phytophagous insects (Symondson et al. 2002; Klemola et al. 2014; Vidal and Murphy 2018). Together, specialists and generalists interact to keep populations at lower densities (Hochberg et al. 1990; Snyder and Ives 2003; Hajek and Eilenberg 2018; Murphy et al. 2018). This highlights the importance of specialist parasitoids in their control of invasive species but can overlook interactions with native natural enemies (Broadley et al. 2022).

The parasitization rate obtained in this present study (5.7%) contrasts with other published data which report about 22.97 ± 6.41% (Tagaki and Murakami 1997; Gardner et al. 2013). Other authors (Tagaki and Murakami 1997; Gardner et al. 2013) reported similar observations regarding egg size and coloration of the parasitized and non-parasitized *B. subaeneus* eggs.

According to our evidence, *Paratelenomus saccharalis* is a potential biological control for the invasive pest *Brachyplatys subaeneus* at a 5.7% parasitization rate. We hypothesize the implementation of specialized biological control methodologies will increase this rate and be an effective method for reducing populations of *B. subaeneus*. More research is needed regarding the parasitization of *Paratelenomus saccharalis* on the invasive pest *Brachyplatys subaeneus*.

Figure 3. *Paratelenomus saccharalis* (Dodd) adult emerging from *B. subaeneus* egg and pharate adults in darkened eggs.
Acknowledgments

We thank the coordination of S. Paton Project, Smithsonian Tropical Research Institute of Panama, with the project: Impact of Insects Herbivory on Mangroves in the Ramsar Wetland Wildlife Protected Area, Juan Diaz, Bay of Panamá. To (SENACYT- City of Knowledge): Project Mangroves Sentinels of Climate Change: Monitoring, Vulnerability and Resilience of Marine-Coastal Ecosystems of Panama Bay and Chame Bay: for providing the transportation, materials, and equipment funds to the sampling sites in Panama Bay. Thank you to the reviewers, Gareth King and Alfredo Lanuza-Garay, for their comments and observations for the improvement of the manuscript.

Literature Cited

Received July 4, 2023; accepted September 17, 2023.
Review editor Davide Dal Pos.