1004

Chalcochares hirsutifemur (Banks) (Hymenoptera: Pompilidae: Pompilinae), a probable obligate parasitoid of *Aptostichus* Simon (Araneae: Mygalomorphae: Euctenizidae) in California

Frank E. Kurczewski
1188 Converse Drive NE,
Atlanta, GA 30324
kurczewskifrank@gmail.com

Alice J. Abela
2390 Lake Marie Drive
Santa Maria, CA 93455
aliceinwl@hotmail.com

Akira Shimizu
Department of Biological Science, Tokyo Metropolitan University,
Minami-ohsawa 1-1, Hachioji, Tokyo, 192-0397, Japan
aquulashimizu7@gmail.com

Date of issue: August 29, 2023

Center for Systematic Entomology, Inc., Gainesville, FL

Published on August 29, 2023 by
Center for Systematic Entomology, Inc.
P.O. Box 141874
Gainesville, FL 32614-1874 USA
http://centerforsystematicentomology.org/

Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. *Insecta Mundi* will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. *Insecta Mundi* publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources, including the Zoological Record and CAB Abstracts. *Insecta Mundi* is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology.

Guidelines and requirements for the preparation of manuscripts are available on the *Insecta Mundi* website at http://centerforsystematicentomology.org/insectamundi/

Chief Editor: David Plotkin, insectamundi@gmail.com
Assistant Editor: Paul E. Skelley, insectamundi@gmail.com
Layout Editor: Robert G. Forsyth
Editorial Board: Davide Dal Pos, Oliver Keller, M. J. Paulsen
Founding Editors: Ross H. Arnett, Jr., J. H. Frank, Virendra Gupta, John B. Heppner, Lionel A. Stange, Michael C. Thomas, Robert E. Woodruff
Review Editors: Listed on the *Insecta Mundi* webpage

Printed copies (ISSN 0749-6737) annually deposited in libraries
Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
The Natural History Museum, London, UK
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

Electronic copies (online ISSN 1942-1354) in PDF format
Archived digitally by Portico.
Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi
University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/
Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240

This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
https://creativecommons.org/licenses/by-nc/3.0/
Chalcochares hirsutifemur (Banks) (Hymenoptera: Pompilidae: Pompilinae), a probable obligate parasitoid of Aptostichus Simon (Araneae: Mygalomorphae: Euctenizidae) in California

Frank E. Kurczewski
1188 Converse Drive NE,
Atlanta, GA 30324
kurczewskifrank@gmail.com

Alice J. Abela
2390 Lake Marie Drive
Santa Maria, CA 93455
aliceinwl@hotmail.com

Akira Shimizu
Department of Biological Science, Tokyo Metropolitan University,
Minami-ohsawa 1-1, Hachioji, Tokyo, 192-0397, Japan
aquilashimizu7@gmail.com

Abstract. Size equivalence, seasonal synchronicity, geospatial sympatry, habitat specificity, and host-searching behavior implicate the spider wasp Chalcochares hirsutifemur (Banks) (Hymenoptera: Pompilidae: Pompilinae) as an obligate parasitoid on species of the wafer-lid spider genus Aptostichus Simon (Araneae: Mygalomorphae: Euctenizidae) on coastal sandy back dunes in San Luis Obispo and Santa Barbara counties, CA. This is substantiated by 2010–2022 macrophotographs, videos, and field observations. Such host evidence supports recent unpublished phylogenomic studies that place Chalcochares as a sister genus of the spider wasp tribe Aporini, in which all species are known obligate parasitoids on trapdoor spiders and related Mygalomorphae. Chalcochares hirsutifemur and C. engleharti (Banks) are separated based on morphological, geographic, and probable host spider differences. Resource partitioning on the coastal sand dunes between C. hirsutifemur and three species of smaller Aporus Spinola is proposed.

Key words. Chalcochares engleharti, Aporus hirsutus, Aporus luxus, Aptostichus atomarius, Aptostichus simus, resource partitioning.

Introduction

The genus Chalcochares Banks (Pompilinae: Pompilini) possesses several unique external morphological characteristics (Evans 1950). The hind wings and anal lobe are extraordinarily large. Some external morphological characteristics resemble those of the spider wasp genus Calopompilus Ashmead (Pepsinae: Pepsini): rather short legs and antennae; and female metasoma stout with basal segments mildly constricted. The characteristic of female metasoma stout with basal segments mildly constricted is found only in the two species of Chalcochares and Calopompilus pyrrhomelas (Walker) (Evans 1950; Townes 1957). Chalcochares is like the genus Psorthaspis Banks (Pompilinae: Aporini) in overall head and thoracic structure and the subgenus Plectraporus Bradley of the genus Aporus Spinola (Pompilinae: Aporini) in possessing a hairy, bluish body, very broad front and vertex with eyes positioned toward side of head, and rather long, flattened above and straight sided pronotum (Evans 1950, 1966; Wasbauer and Kimsey 1985). Similarity in external morphology of these spider wasp genera is probably the result of likeness in habitat, ecology, host spider type, and host capture. Calopompilus, Psorthaspis, and Aporus are obligate parasitoids on wafer-lid spiders, other trapdoor spiders, and related Mygalomorphae that they capture and entomb in the spiders’ own burrows (Williams 1928; Jenks 1938; Kurczewski et al. 2021, 2023).
Chalcochares contains only two species, *C. engleharti* (Banks) (Fig. 1) and *C. hirsutifemur* (Banks) (Fig. 2–4), in the Nearctic Region, *C. engleharti* ranging from central Texas to southern Mexico and *C. hirsutifemur* from southern New Mexico and California to north-central Mexico (Fig. 5; Evans 1950, 1966; Wasbauer and Kimsey 1985). *Chalcochares hirsutifemur* females are rather large (12–20 mm long; Evans 1966), hairy, and stout-bodied with bluish or purplish fine pubescence (Fig. 2–4; Abela 2021d, 2021e). The broad wings are fuliginous and strongly violaceous. The gena is enlarged behind the compound eyes. The antenna flagellum is short; flagellomere 1 in the female is only 3.1–3.6 (mean, 3.3; \(n = 10 \)) times longer than its width. The forelegs are short. The fore tarsi are rather strongly spinose. The fore tibiae have long, stout, curved spines apicomedially (Evans 1950, 1966).

Chalcochares hirsutifemur inhabits arid and semi-arid regions in southern California, Arizona, New Mexico, Texas, and Mexico (Fig. 5); chaparral is the preferred habitat (Wasbauer and Kimsey 1985). This species is uncommon on southern California coastal dunes and hills (Wasbauer and Kimsey 1985). There is a single

Figure 1. *Chalcochares engleharti* (Banks), female; Camp Bullis, Bexar County, Texas; 29 May 1952; K. Stockley collector (det. M. Wasbauer 1956). A. Head, mesosoma, and anterior part of metasoma, dorsal view. B. Head, anterior view. C. Head, dorsal view. D. Head, anterior part of mesosoma, and fore legs, lateral view (arrow, apicomiesial spine on fore tibia). Scale bars: 5 mm (A); 1 mm (B–D).
Chalcochares hirsutifemur, a probable obligate parasitoid of Aptostichus

Insecta Mundi 1004 • 3

Figure 2. Chalcochares hirsutifemur (Banks), female; Anza, Riverside County California; 24 June 195? L. A. Stange collector (det R. Snelling 1963). A. Whole body, dorsal view. B. Head, anterior view. C. Head and anterior part of mesosoma, dorsal view. D. Head, anterior part of mesosoma, and fore legs, lateral view (arrow, apicomesial spine on fore tibia). Scale bars: 5 mm (A); 1 mm (B–D).

Chalcochares hirsutifemur generation per year with nearly all collection dates being in June, July, and August (Wasbauer and Kimsey 1985). Nothing is known about the biology of C. hirsutifemur except for flower visitation records (Evans 1950; Wasbauer and Kimsey 1985; Abela 2011, 2020, 2021a, 2021b, 2021c, 2021d, 2021e, 2021f; Horner 2019). Females are rarely seen on the ground surface. The absence of host capture and nesting information infers that this species has a secretive lifestyle, perhaps capturing and ovipositing on wafer-lid spiders in or near their burrows.

Chalcochares hirsutifemur females are probably obligate parasitoids on wafer-lid spiders of the genus Aptostichus Simon (Araneae: Mygalomorphae: Euctenizidae) and, possibly, other genera of Euctenizidae. The large genus Aptostichus (>40 species) is found mainly in California and is characterized by cryptic psammophilic carapace and abdomen coloration (Fig. 6–7; Bond 2012). Aptostichus species have few readily identifiable external morphological characteristics (Bond 2012). Chalcochares hirsutifemur females probably capture Aptostichus atomarius Simon (San Bernardino Hills trapdoor spider) (Fig. 6; Abela 2014a) and A. simus Chamberlin (Southern coastal dune trapdoor spider) (Fig. 7; Abela 2014b) on southern California coastal sandy back dunes from Monterey to San Diego counties based on size equivalence, seasonal synchronicity, geospatial sympatry, habitat specificity, and host-searching behavior. The shallow to moderately deep, silk-lined burrows of Aptostichus
species are remarkably similar in structure (Bond 2012; Abela, pers. obs.). The spider is often restricted to living in such a burrow for most of its life. *Aptostichus simus* individuals sit beneath the wafer-lid at night in anticipation of capturing unsuspecting invertebrate prey that wander too close to the entrance. During the heat of the day the spider moves to the cooler end of its burrow, usually in the shade beneath vegetation (Abela, pers. obs.). The burrow entrance is covered by a flimsy, thin, silk and sand wafer-lid, rendering it largely indistinguishable from the surrounding sand surface but relatively easy for wasp entry. *Aptostichus atomarius*, *A. stephencolberti* Bond (Stephen Colbert trapdoor spider), *A. miwok* Bond (Miwok trapdoor spider), and *A. simus* are all potential host spider species of *C. hirsutifemur* in central and southern California coastal sand dunes. *Aptostichus stanfordianus* Smith (Stanford Hills Trapdoor Spider) is another possible host spider species of *C. hirsutifemur*. Hawk (2022) photographed *C. hirsutifemur* at Pinnacles National Park, San Benito County, CA where Bond (2012) reported an abundance of *A. stanfordianus*. When mapped, the distribution of *C. hirsutifemur* far exceeds that of species of *Aptostichus*, extending into southwestern Texas and western/central Mexico (Fig. 5; Bond 2012). However, *Aptostichus* likely has a larger distribution than is currently known including additional species from Baja California, southern Arizona, and Sonora (Hedin, pers. comm.). Species of *Eucteniza* Ausserer and *Entychides* Simon should also be considered as potential hosts of *C. hirsutifemur* in Mexico and Arizona based on their size, range, and ecology (Hedin, pers. comm.). A possible impediment for wasp entry into *Eucteniza* and *Entychides* burrows is the thicker cork-like trapdoor (Bond and Opell 2002; Bond and Godwin 2013). However, the mandibles of *C. hirsutifemur* are bidentate and the foretarsi are rather strongly spinose (Evans 1950).

The purpose of this paper is to present actual and circumstantial evidence of an obligate parasitoid-host relationship between *C. hirsutifemur* and *Aptostichus* wafer-lid spiders. We introduce observations on the host-searching, digging, and prospective nesting behavior of the wasp as there is no such information in the literature or on specimen labels in insect collections. Abela’s macrophotographs, videos, and field observations of *Chalcoches hirsutifemur*, *Aptostichus atomarius* and *A. simus* provided the catalyst for undertaking such a study.
Figure 5. Geographic locality and range map for *Chalcochares hirsutifemur* (from Evans 1966; Wasbauer and Kimsey 1985) and *Aptostichus* species (from Bond 2012).
Materials and Methods

This study began in July 2020 when Alice Abela emailed photographs of a rather large, blue, hairy spider wasp to Frank Kurczewski for identification. Kurczewski immediately recognized the species as being *Chalcochares hirsutifemur*, an uncommon and unusual genus and species from the southwestern United States and Mexico. He asked Abela to observe and photograph this spider wasp species as nothing was known about its host spider or host-searching, digging, and nesting behavior. Abela was working at the time on nature projects in the area where this species was, surprisingly, rather prevalent. In July-August 2021 Abela made observations, took additional photographs of *C. hirsutifemur*, and posted them on BugGuide.com, flickr.com, and iNaturalist.org. She also made 1 and 4 minute long-videos of two females host-searching and digging for host spiders in 2021 and 2022. Concurrently, Kurczewski reviewed the sparse morphological, taxonomic, ecological, and geographic distribution reports on *C. hirsutifemur* by Evans (1950, 1966), Krombein (1979), and Wasbauer and Kimsey (1985).

Abela’s first video of a host-searching female of *C. hirsutifemur* was made 1 July 2021 on sandy coastal back dunes, Vandenberg Air Force Base, Santa Barbara County, CA. Abela made a second video of a *C. hirsutifemur* host-searching in the same location on 11 August 2022 during which the wasp spent several minutes digging before flying away. Her second video revealed the wasp, during excavation, had exposed the silken tubular entrance of an *Aptostichus* burrow. This burrow would have been too small in diameter for the wasp to enter, the silk was severed, and lack of recent occupancy probably caused the wasp to continue searching elsewhere.

Abela's macrophotographs of this species were taken 30 June 2011, 2 July 2020, and 9 July–16 August 2021 at this location and Guadalupe-Nipomo Dunes National Wildlife Refuge, San Luis Obispo County, CA (Fig. 8). She used a Canon 5D Mark III or Mark IV with a Canon EF 100 mm f/2.8 Macro USM, Canon MP-E 65 mm f/2.8 1–5× Macro, or LAOWA 100 mm F2.8 CA Dreamer Macro 2× paired with a Canon Macro Twin Lite MT-24EX or Canon Macro Twin Lite MT-26EX-RT or a Venus Kx 800 Twin Flash. Her photographs were shot from a kneeling, sitting, or prone position. We examined and analyzed 22 photographs of *C. hirsutifemur* for locality, date, plant/flower species, adult male and female external morphology, and wing wear as an indicator of age and longevity. We also examined photographs of *C. hirsutifemur* from nearby Rancho Guadalupe Dunes Preserve in San Luis Obispo, CA by Van Loon and Van Loon (2021) and in Pinnacles National Park, San Benito County, CA by Hawk (2022).

Specimens of *Chalcochares engleharti* and *C. hirsutifemur* were photographed by Akira Shimizu using a digital camera (Nikon Coopix 4500 and MDC lens) equipped with a stereo microscope (Leitz TS) and a transmitted light microscope (Leitz Dialux). Photographs were stacked using ZM (Hadley 2008) and the final synthesized photographs were post-processed for contrast and brightness using Adobe Photoshop software.
Figure 8. Overhead coastal map of San Luis Obispo and Santa Barbara counties showing research site locations of *Chalcochares hirsutifemur*, *Aporus hirsutus*, *Aporus luxus*, *Aptostichus atomarius*, and *Aptostichus simus*. Rectangular inset on California map in upper right corner indicates area of study.
Abela made observations, excavated burrows, and took 22 photographs of *Aptostichus atomarius* on sandy coastal back dunes, Vandenberg Air Force Base, Santa Barbara County, CA, 21 February 2010–16 August 2021 (Fig. 8). She found no spider wasp larvae, pupae, or cocoons in any of the *A. atomarius* burrows. Abela observed, excavated burrows, and took 83 photographs of *Aptostichus simus* on sandy coastal foredunes and back dunes at Cuesta-by-the-Sea, Guadalupe-Nipomo Dunes National Wildlife Refuge, Montana de Oro State Park, Morro Bay, Morro Strand State Beach, Oso Flaco Lake, and Oso Flaco Dunes Natural Area in San Luis Obispo County, CA; and Ocean Beach Park and Vandenberg Air Force Base [Coastal Dune Scrub, Coastal Live Oak Woodlands, Coastal back dunes, Coastal foredunes, Surf Beach] in Santa Barbara County, CA, 8 June 2014–23 July 2021 (Fig. 8). She found a discarded pompilid cocoon in one *A. simus* burrow as evidence of a parasitoid spider wasp. Abela recorded other locality records and geographic coordinates for *A. atomarius* and *A. simus* in San Luis Obispo and Santa Barbara counties, CA from Bond (2012) (Fig. 5). Additional locality and seasonal records for *A. simus* were examined and added to Fig. 5 from Willems (2018), Hedin (2020), Johnson (2020a), and Noss (2020).

Interpreting the function of external morphological structures of the female wasp involved reading and deciphering Evans’ (1950, 1966) keys and description of the genus *Chalcochares* as well as Shimizu et al.’s (2021, 2022) papers on trapdoor spider-hunting spider wasps. Evans’ (1966, Fig. 21) map of southwestern United States and Mexican geographic distribution records of *C. hirsutifemur* was used by Abela in formulating her revised geographic distribution map (Fig. 5). Krombein (1979) summarized the taxonomic and distributional information for *C. hirsutifemur*. Wasbauer and Kimsey (1985) highlighted important genus and species taxonomic characteristics, introduced several flower records, and presented a geographic distribution map for *C. hirsutifemur* from which Abela obtained additional California locality records for Fig. 5.

We selected lateral and dorsal photographs of *C. hirsutifemur* females to show diagnostic external morphological structures (Fig. 3–4; Abela 2021d, 2021e). The consolidated information from Abela’s photographs, videos, and field observations were analyzed and assessed as to how the external morphological structures of *C. hirsutifemur* might be used in searching for and excavating an *Aptostichus* burrow. Akira Shimizu added detailed macrophotographs of *C. engleharti* and *C. hirsutifemur* to highlight structural features that are probably used in facilitating spider burrow entry and host spider capture (Fig. 1, 2). We chose the largest and sharpest photographs of *Aptostichus atomarius* and *A. simus* females to show significant morphological features against a lighter sand background (Fig. 6–7; Abela 2014a, 2014b). Lynn S. Kimsey, University of California–Davis, Davis, CA provided us with a copy of her joint 1985 paper with Marius Wasbauer that allowed Abela to use California Insect Survey coordinates to produce her revised *C. hirsutifemur* geographic locality and range map (Fig. 5). Kimsey also scanned Evans’ (1966) Figure 21 geographic locations for use in this map. Abela’s modification of an Esri, Maxar, Geo Eye, Earthstar Geographics map of extreme southern San Luis Obispo and northern Santa Barbara counties enabled pinpointing the exact locations of where wasp and spider species were photographed and observed (Fig. 8). Frank Kurczewski wrote the manuscript based on information provided by the three authors.

Results

Flower visitation records

Chalcochares hirsutifemur males and females visit a wide variety of flowers for nectar: *Acacia* sp. (Fabaceae), *Asclepias erosa* Torr. and *Asclepias* sp. (Apocynaceae), *Baccharis glutinosa* Pers. (Asteraceae), *Croton californicus* Muell. Arg. (Euphorbiaceae), *Eriogonum fasciculatum* Benth. and *E. parvifolium* Sm. (Polygonaceae) (Fig. 3–4), *Flourensia cernua* DC (Asteraceae), *Foeniculum vulgare* Mill. (Apiaceae), *Helianthus annuus* L. [extra-floral nectaries], *Isocoma hartwegi* (A. Gray) Greene (Asteraceae), *Koeberlinia spinosa* Zucc. (Koeberliniaceae), and *Tamarix gallica* L. (Tamaricaceae) (Evans 1950; Wasbauer and Kimsey 1985; Abela 2011, 2021f, 2021h; Horner 2019; Hawk 2022).

Functional morphology of *Chalcochares*

In Pompilidae, there are at least two types of morphological adaptations for attacking trapdoor spiders and related Mygalomorphae: *Entomobora* - (Shimizu et al. 2021, fig. 6; 2022, fig. 11) and *Paraclavelia*-morphotypes (Shimizu et al. 2021, fig. 9; Shimizu et al. 2022, fig. 1, 2, 3, 6, 7). The morphological features common to these morphotypes
are frons broader than compound eyes; lower frons deeply depressed or hollowed laterally to antennal sockets; clypeus narrower than lower frons and more or less flattened with basal or basilateral depressions continuous with lower frontal depression(s); and scape curved outward and flattened on lateral face, which fits in lower frontal depression. The features unique to Entomobora-morphotype are vertex posterior to ocelli much extended posterodorsally; and pronotal dorsum truncate anteriorly with neck deeply depressed. The feature unique to Paraclavelia-morphotype is elongate (longer than mesoscutum at midline), dorsally flattened, low pronotum; and long, stout, curved spine on the fore tibia apically.

Chalcochares engleharti and C. hirsutifemur have a broad frons (Fig. 1B, 2B) and long, stout, curved spine on the fore tibia (Fig. 1D, 2D, arrows). The former is probably employed as a lever in prying open the lid and supporting it (see also Shimizu et al. 2021, figs 7, 8, 11) and the latter may function as a hook when the wasp lifts the trapdoor (Shimizu et al. 2022, p. 126). These species, however, do not have any of the other features listed above. Species of Chalcochares are morphologically much less specialized in preying on trapdoor and wafer-lid spiders than species of the Entomobora- and Paraclavelia-morphotypes. This lack of specialized morphological features is probably why the genus Chalcochares was initially placed taxonomically in the subfamily Pompilinae, tribe Pompilini by Evans (1950).

Chalcochares engleharti can be separated morphologically from C. hirsutifemur by its vertex elevated strongly above (Fig. 1B vs 2B) and extended behind the compound eyes and very swollen genae (Fig. 1A, C, D vs 2A, C, D) (Evans 1950, 1966), inferring the mandibular muscles of C. engleharti are larger and stronger than those of C. hirsutifemur. Chalcochares engleharti may be adapted to prying open the thicker trapdoors of larger and more powerful spiders such as Ummidia Thorell, Eucteniza, and Entychides, while C. hirsutifemur may be limited to opening the much thinner, flimsier wafer-lids of the smaller Aptostichus.

Host-searching

A C. hirsutifemur female searching for a host spider was videographed for 1 minute by Alice Abela on 1 July 2021 on sandy coastal back dunes, Vandenberg Air Force Base, Santa Barbara County, CA. The wasp ran circuitously across the sand and dried ground vegetation periodically flicking her wings. She paused in one spot and dug downward for half her body length removing the sand backwards, using her forelegs alternately. She backed from the excavation briefly and circled 3 times in 37 seconds. Such behavior infers the wasp was attempting to receive sensory information about the underground location of a potential host spider. She exited the excavation and ran across the ground flicking her wings, avoiding the bare sand, and staying mainly on dried ground vegetation as she continued her search for the remaining 23 seconds of the video.

Another female was observed on the same sandy coastal back dunes on 16 August 2021. She ran across the sand searching for a host spider and periodically dug in bare sand and beneath small shrubs, exhibiting behavior like host-searching females of Aporus (Plectraporus) hirsutus (Banks) and A. (Aporus) luxus (Banks) (Kurczewski et al. 2021). Based on her larger size, host-searching behavior, specific location, and sizeable host spiders in the vicinity, this C. hirsutifemur female was likely targeting the wafer-lid spider Aptostichus atomarius or, less likely, A. simus (Fig. 6–7).

Abela videographed a C. hirsutifemur female, ~20 mm long, searching for a host spider for 4 minutes at the same location on 11 August 2022. The wasp walked back and forth across the bare sand in a zig-zag manner, flicking her wings, for 30 seconds. She then stopped in two spots, 25–30 cm apart, each with a small amount of plant debris, and dug with her forelegs for 25 seconds and 1+ minute, occasionally flicking her wings. In both spots she circled once or twice and changed her angle of excavation. At the second dig, the wasp's body entered the sand for 2/3 its length. During this excavation she exposed the forked silken entrances of an Aptostichus burrow which ran horizontally beneath the sand surface. The silken burrow was severed at a length of 2.5 cm from the entrance. This burrow was probably too small (8–10 mm) for wasp entry, it was severed implying a previous entry, and the silk looked old, causing her to vacate and continue searching not only on the bare sand but on dried plant debris and underneath overhanging vegetation. She resumed her search for another 2 minutes, stopped in one place for 1–2 seconds, dug, searched further, and flew off.

A comparatively large (~25 mm long), paralyzed A. atomarius female was found lying dorsal side upward on sandy back dunes at Vandenberg Air Force Base, Santa Barbara County, CA on the evening of 3 May 2013 in an area where C. hirsutifemur was prevalent (Fig. 6; Abela 2013). There was no wasp in attendance. The spider
twitched its appendages when touched. It was presumably stung earlier in the day and left abandoned on the sand surface, perhaps because of its large size and potential difficulty in transport back to its burrow.

Discussion

Chalcochares (Pompilinae: Pompilini) resembles *Calopompilus* (Pepsinae: Pepsini) morphologically (Evans 1950, Wasbauer and Kimsey 1985), perhaps the result of the two unrelated genera being obligate parasitoids on wafer-lid and related mygalomorph spiders while displaying convergent ecological and behavioral traits. *Chalcochares* is also structurally like the genera *Psorthaspis* and *Aporus* (Pompilinae: Aporini) for the same reason—a dependence on wafer-lid and related spiders as a source of larval food (Evans 1950, 1966; Wasbauer and Kimsey 1985). Recent unpublished phylogenomic data support *Chalcochares* as a sister genus to the tribe Aporini, especially the genus *Psorthaspis* (J. P. Pitts, pers. comm.). The pompiline genus *Chalcochares* is linked to the tribe Aporini based on molecular, ecological, and probable parasitoid-host relationship.

Chalcochares engleharti is separated morphologically from *C. hirsutifemur* by its strongly extended vertex and very swollen genae (Fig. 1 vs Fig. 2) (Evans 1950, 1966), inferring the mandibular muscles of *C. engleharti* are larger and stronger than those of *C. hirsutifemur*. *Chalcochares engleharti* may be adapted to prying open the thick trapdoors of larger and stronger trapdoor spiders such as *Ummidia*, *Eucteniza*, and *Entychides* while *C. hirsutifemur* is limited to opening the much thinner, flimsier wafer-lids of the smaller *Aptostichus*. There are at least two types of morphological adaptations in spider wasps for attacking trapdoor spiders and related Mygalomorphae: *Entomobora*- and *Paraclavelia*-morphotypes (Shimizu et al. 2021, 2022). In the *Entomobora*-morphotype, the vertex is strongly elevated above the eye tops and extends far behind the eyes (Shimizu et al. 2021, fig. 6; 2022, fig. 11). Although *C. engleharti* is less specialized morphologically than species of *Entomobora* Gistel (Shimizu 2021, fig. 11), it may attack large and powerful spiders living in subterranean burrows with thick trapdoors.

Chalcochares hirsutifemur compares favorably to *Aporus* (*Plectraporus*) *hirsutus* not only in specific name, bluish coloration, hairy body and legs, narrow eyes positioned toward side of head, short and spiny foretarsi, and enlarged and flattened pronotum, but also in potential host type, host searching and digging behavior, and, presumably, entombment of immobilized spider in its own burrow (Kurczewski et al. 2021). Females of both species search for a host spider by running across the sand, occasionally flicking their wings. They pause periodically, dig in the sand with their mandibles and forelegs for a few seconds to depths of a few mm, back out, then run to the next trial digging site and repeat this behavior. Wasps that constantly move from site to site apparently do not receive appropriate sensory information about the underground presence of a potential host spider. In certain spots, wasps dig deeper, often to half their body length, or they disappear completely in the sand spending several minutes underground. Such wasps may be receiving appropriate sensory information about the presence of a potential subterranean host spider.

Resource partitioning, where two or more species divide resources such as food and space in order to coexist, is seemingly operational in the sandy coastal dunes of San Luis Obispo and Santa Barbara counties, CA. Four species of coastal dune inhabiting blue spider wasps, *Chalcochares hirsutifemur*, *Aporus* (*Aporus*) *concolor* (Smith), *A.* (*A.*) *luxus*, and *A.* (*Plectraporus*) *hirsutus* are or are suspected of being obligate parasitoids on *Aptostichus* wafer-lid spiders. *Aporus concolor* is the rarest of the four species in this area (Wasbauer and Kimsey 1985; Abela pers. obs.) (Fig. 8). It has been observed searching and digging for host spiders in this area (Kurczewski et al. 2021; Abela pers. obs.). *Aporus luxus* has been reported or photographed with immobilized individuals of *Aptostichus hesperus* (Chamberlin) (Kurczewski and West 2022), *A. miwok* (Kurczewski et al. 2020), and *A. stanfordianus* Smith (Wasbauer 1982) in central and southern California. The host record of *A. stanfordianus* probably pertains to *A. stephencolberti* (Kurczewski et al. 2021). *Aporus hirsutus* is commoner than *A. luxus* on the sandy coastal fore- and back dunes of San Luis Obispo and Santa Barbara counties (Fig. 8; Wasbauer and Kimsey 1985; Abela pers. obs.). *Aporus hirsutus* reportedly captures *A. atomarius* (Kurczewski and Edwards 2012), *A. simus* (Abela 2015; Kurczewski et al. 2017, 2021; Willems 2018; Johnson 2020a, b), *A. stephencolberti* Bond (Luhrs 2020), and *A.* sp., probably *A. stanfordianus* (Williams 1928; Krombein 1979; Wasbauer and Kimsey 1985). The host record for *A. atomarius* may pertain to *A. simus*, and that for *A.* sp., probably
A. stanfordianus, is likely A. stephencolberti (Kurczewski et al. 2021). An immobilized A. atomarius female, ~25 mm long, was found on the sand surface of coastal back dunes in Santa Barbara County, CA in an area where C. hirsutifemur females were rather common (Fig. 8; Abela 2013). Because of its large size, this immobilized spider was probably the discarded prey of C. hirsutifemur and not that of the much smaller A. luxus or A. hirsutus.

Aporus hirsutus females are the smallest (6.5–12.5 mm, Evans 1966) of the four coastal dune inhabiting spider wasps. This species inhabits foredunes as well as back dunes and preys mainly on Aptostichus simus juveniles (~13–15 mm) (Kurczewski et al. 2021; Abela per. obs.). [An A. simus adult female extracted from its burrow was 18 mm long, including chelicerae (Abela pers. obs.).] Aporus luxus females are slightly larger (8–14 mm, Evans 1966) than A. hirsutus, inhabit the back dunes, and are probably obligate parasitoids on both A. simus and A. atomarius juveniles (~15 mm) as they prey on A. miwok and A. stephencolberti, two species with similar burrowing habits (Kurczewski et al. 2021). Although there are no host records for Aporus concolor, it is slightly larger than A. luxus (~13–15 mm, Evans 1966; Kurczewski pers. obs.) and inhabits the back dunes. This species probably has the same host requirements as A. luxus, capturing juveniles of Aptostichus as it and A. luxus are similar in appearance, ecology, and external morphology (Evans 1966; Wasbauer and Kimsey 1985). Chalcochares hirsutifemur females are, by far, the largest (12–20 mm) of the four coastal dune blue spider wasp species and were more common in July and August than any of the Aporus species in an area of back dunes (Fig. 8). Females of C. hirsutifemur may capture and entomb in their own burrows equivalent size A. atomarius adult and subadult females (~18–25 mm) and A. simus adult and subadult females, the two dominant species of Aptostichus in this localized area.

Acknowledgments

We thank Steven Alm, University of Rhode Island, Kingston, RI, and Emma Jochim, University of California–Davis, Davis, CA for reviewing the manuscript. Lynn S. Kimsey, University of California–Davis, Davis, CA, sent us a copy of her joint (1985) paper with Marius S. Wasbauer on the California Spider Wasps of the Subfamily Pompilinae (Hymenoptera: Pompilidae) and she scanned Fig. 21 from Evans (1966) Revision of the Mexican and South American spider wasps of the subfamily Pompilinae. James P. Pitts, Utah State University, Logan, UT, forwarded information on the phylogenomic position of the genus Chalcochares from his ongoing research on Pompilidae systematics. Marshal Hedin sent information on the geographic distribution and ecology of genera of Euctenizidae. Chloe and Trevor Van Loon, San Jose, CA provided photographs and information on Chalcochares hirsutifemur from the Rancho Guadalupe Dunes Preserve, Guadalupe, CA. Daniel Horner, Mariposa, CA answered our email asking for information about his C. hirsutifemur photographs on BugGuide.com from San Benito County, CA. Lukas Friedrich, Atlanta, GA, revised Figure 8.

Literature Cited

Received June 9, 2023; accepted August 10, 2023.

Review editor Davide Dal Pos.