Phylogeny and systematics of the giant rhinoceros beetles
(Scarabaeidae: Dynastini)

J. Mark Rowland
Department of Biology
MSC03 2020
University of New Mexico
Albuquerque, NM 87131, USA

Kelly B. Miller
Department of Biology
Museum of Southwestern Biology
MSC03 2020
University of New Mexico
Albuquerque, NM 87131, USA

Date of Issue: November 30, 2012
Phylogeny and systematics of the giant rhinoceros beetles (Scarabaeidae: Dynastini)

J. Mark Rowland
Department of Biology
MSC03 2020
University of New Mexico
Albuquerque, NM 87131, USA
rowland@unm.edu

Kelly B. Miller
Department of Biology
Museum of Southwestern Biology
MSC03 2020
University of New Mexico
Albuquerque, NM 87131, USA
kbmiller@unm.edu

Abstract. This report contains the first inclusive phylogenetic analysis and taxonomic structure for the genera presently included within the scarabaeid tribe Dynastini. The study was based upon morphological, biogeographic and molecular data and yielded direct support for the recognition of three subtribes in the Dynastini: Dynastina MacLeay, New Status (Dynastes Kirby, Augosoma Burmeister, Megasoma Kirby, Golofa Hope), Xylotrupina Hope, New Status (Xylotrupes Hope, Allomyrina Arrow, Trypoxylus Minck, Xyloscaptes Prell) and Chalcosomina Rowland and Miller, New Subtribe (Chalcosoma Hope, Haploscapanes Arrow, Beckius Dechambre, Eupatorus Burmeister, Pachyoryctes Arrow). The results provide indirect but significant support for the origin of the tribe Dynastini to be of an age no later than the early Late Cretaceous. Molecular and morphological evidence suggests that Eupatorus as constituted in current taxonomic literature is not monophyletic, and taxonomic alternatives are discussed to address this deficiency. A plausible explanation is also provided for the perplexing use by F. W. Hope of the family-group names Xylotrupidae and Dynastidae.

Introduction

The remarkable extravagance and variety of male sexual ornaments that have evolved among the giant rhinoceros beetles (tribe Dynastini) have attracted the ardent attention of naturalists for centuries (e.g. Scheuchzer 1732-1737). However, despite this notoriety basic aspects of the biology of this group - which might help reveal how and why such armaments arise and evolve - remain poorly resolved to this day. A conspicuous example is the virtual absence of investigations since Darwinian times that might have focused upon evolutionary relationships among the relatively few genera that compose the Dynastini.

This study attempts to aid such further research by providing the first phylogenetic analyses within the tribe Dynastini (Fig. 1), notwithstanding Rowland (2003). These analyses are based upon morphological, biogeographic and molecular characters from representatives of each of the 13 genera and approximately 70% of the species currently proposed to constitute the tribe. From the results of these analyses we have assembled a relatively robust phylogenetic topology which forms the basis of a first, readily testable taxonomic structure for the tribe – and from which trends in character evolution can be assessed. Further, the phylogenetic analyses provide indirect evidence that suggests a minimum geological age of origin of the tribe. Discussions are also provided concerning enigmatic historical usages of family-group names, as well as present directions for future refinements in the proposed taxonomic system for the tribe Dynastini.

Methods and Materials

Taxon sampling. Ingroup taxa included 20 species representing each genus of the tribe Dynastini (Table 1): Augosoma Burmeister, Golofa Hope, Dynastes Kirby, Megasoma Kirby, Trypoxylus Minck, Xyloscaptes
Prell, Allomyrina Arrow, Xylotrupes Hope, Haplocaspanes Arrow, Chalcosoma Hope, Beckius Dechambre, Eupatorus Burmeister, Pachyoryctes Arrow. Where possible multiple species are included from genera that contain more than one species to examine monophyly of the genus-groups. Morphological and taxonomic analyses were performed by JMR. Molecular and phylogenetic analyses were performed by KBM.

Outgroup taxa included four species from other tribes and subfamilies within Scarabaeidae (Table 1). The resulting cladograms were rooted with Polyphylla decemlineata (Say), a member of the subfamily Melolonthinae.

In addition to the specimens employed in the phylogenetic analyses, the following taxa were examined for development of the descriptions of the subtribes and the key to the subtribes and genera: Allomyrina pfeifferi (Redtenbacher), Augosoma centaurus (Fabricius), Beckius beccarii (Gestro), Chalcosoma atlas (Linné), C. caucasus (Fabricius), C. mollenkampi (Kolbe), Dynastes granti Horn, D. hercules (Linné), D. neptunus (Quensel), D. satanas (Moser), D. tityus ((Linné), Eupatorus birmanicus Arrow, E. gracilicornis Arrow, E. hardwickei (Hope), E. siamensis (Laporte), Golofa aegeon (Drury), G. argentinus Arrow, G. clauginera (Linné), G. cochlearis Ohaus, G. costaricensis Bates, G. eacus Burmeister, G. imperialis Thomson, G. minuta Sternberg, G. pelagon Burmeister, G. pizarro Hope, G. porteri Hope, G. pusilla Arrow, G. spatha Dechambre, G. tersander (Burmeister), G. unicolor (Bates), G. xiximeca Moran, Haplocaspanes barbarossa (Fabricius), Megasoma acteon (Linné), M. anubis (Chevolat), M. cedrosa Hardy, M. elephas (Fabricius), M. gyas (Herbst), M. joergensi (Bruch), M. mars (Reiche), M. occidentalis Bolivar, Jiménez et Martínez, M. pachecoi Cartwright, M. punctulatum Cartwright, M. sleeper Hardy, M. thersites LeConte, M. vogti Cartwright, Orcetes rhinoceros (Linné), Pachyoryctes solidus Arrow, Trypoxyulus dichotom (Linné), Xylocaptes davidis (Deyrolle et Fairmaire), Xylotrupes australicus Thomson, X. bekeri Schauffuss, X. carinulus Rowland, X. clinius Schauffuss, X. damarenensis Rowland, X. falcatus Minck, X. gideon (Linné), X. inarmatus Sternberg, X. lorquini Schauffuss, X. maclayi Montrouzier, X. meridionalis Prell, X. mniszechii Thomson, X. pachydera Rowland, X. pauliani Silvestre, X. philippinensis Endrödi, X. pubescens Waterhouse, X. siamensis Minck, X. sumatrensis Minck, X. tadoana Rowland, X. ulysse (Guérin-Méneville).

Voucher specimens used in the molecular analyses are deposited in the JM Rowland Collection (JMRC) or the Museum of Southwestern Biology, University of New Mexico (MSBA, K.B. Miller curator) and bear labels with the indicated identifying codes (Table 1).

Morphological data. Morphological characters were assembled from published sources (Arrow 1908, 1911, 1925, 1937, 1944, 1951; Burmeister 1847; Endrödi 1947, 1951, 1957, 1976, 1985; Hope 1837; Janssens 1949; Lacordaire 1856; Latreille, 1829; Minck 1920; Rowland 2003, 2011) and from direct examination of specimens contained in the JMRC. The latter characters were employed for the descriptions of the subtribes, the key to the subtribes and genera of the Dynastini, and the phylogenetic analyses presented in Figures 1 and 2. The key is diagnostic for male specimens that fully express the secondary sexual characters, and is largely synoptic. The systematic account conforms to the format of Smith (2006) and Bouchard et al. (2011), and the nomenclatural actions are in accord with ICZN (1999).

Morphological characters and states as coded for the phylogenetic analysis are listed as follows, and their distribution among studied taxa is given in Table 2.

1. Mandible incisors: 0, adenticulate; 1, denticulate.
2. Cephalic horn apex (male): 0, acuminate; 1, bifurcate.
3. Lateral cephalic horn armature (male): 0, absent; 1, present.
4. Dorsal cephalic horn armature (male): 0, absent; 1, present.
5. Mesal pronotal horn (male): 0, absent; 1, present.
6. Mesal pronotal horn apex (male): 0, acuminate; 1, bifurcate.
7. Mesal pronotal dense pilosity (male): 0, absent; 1, present.
8. Mesal pronotal accessory horns (male): 0, absent; 1, present.
9. Lateral pronotal horns (male): 0, absent; 1, present.
10. Anterior ventrolateral pronotal apices (male): 0, not developed as horns; 1, developed as horns.
11. Prothoracic legs: 0, essentially sexually monomorphic; 1, decidedly sexually dimorphic.
12. Protibia: 0, tridentate; 1, quadridentate.
13. Paramere dorsal interdigitating teeth: 0, absent; 1, present.
14. Paramere distolateral contours: 0, converging inward; 1, parallel or diverging outward.
15. Paramere apex setation: 0, absent or short and inconspicuous; 1, long and conspicuous.
16. Raspulae: 0, essentially a simple chagrin of flexible filaments; 1, chagrin includes sclerotized spines or indurated patches.
17. Dorsal integument color: 0, dark reddish brown; 1, tan to orangish yellow or greenish yellow to bluish gray with irregular dark spots.

DNA sequences. Methods for DNA extraction, amplification and sequencing closely followed Miller et al. (2007, 2009). DNA was extracted using the Qiagen DNEasy kit (Valencia, California, USA) and the animal tissue protocol. In most cases, thoracic muscle tissue was removed and extracted. In some cases other tissues were extracted.

Four genes were sequenced for analysis, *cytochrome c oxidase II* (COII), *16S rRNA* (16S), *histone III* (H3) and *arginine kinase* (ArgKin). Individual gene fragments are missing for some taxa (Table 1). Primers used for both amplification and sequences were derived from several sources (Table 3). Amplification of COII, 16S and H3 required typical amplification conditions (35 cycles of denaturing: 95°C 1 min., annealing: 40-50°C 1 min., elongation: 72°C 1 min.). Arginine kinase required nested reamplification with one amplification run using AK168F and AK939R (Table 3) and amplification from this product using nested primers, AK183F and AK933R (Table 3), using the above conditions with sequencing from this final product. Fragments were PCR amplified using TaKaRa Ex Taq (Takara Bio Inc., Otsu, Shiga, Japan) on an Eppendorf Mastercycler ep gradient S Thermal Cycler (Eppendorf, Hamburg, Germany) and visualized by gel electrophoresis. Fragment purification was done using ExoSAP-IT (USB-Affymetrix, Cleveland, Ohio, USA) and cycle-sequenced using ABI Prism Big Dye (ver. 3.1, Fairfax, Virginia, USA) with the same primers as those used in amplification. Sequencing reaction products were purified using Sephadex G-50 Fine or Medium (GE Healthcare, Uppsala, Sweden) and sequenced with an ABI 3130xl Genetic analyzer (Molecular Biology Facility, UNM). Fragments were sequenced in both directions and sequences were edited using Sequencher (Genecodes 1999).

Analysis. Alignment of COI, H3 and ArgKin was straightforward since these markers are length-invariant and were aligned based on conservation of codon reading frame. Alignment of 16S was done using the program Muscle (Edgar 2004) using the default settings. Gaps in the aligned region were treated as missing data.

The phylogeny was estimated using a combined equal-weights parsimony analysis using the program NONA (Goloboff 1995) as implemented by WinClada (Nixon 2002) using the heuristic command settings “hold 10000”, “mult*100”, “hold/40” and “multiple TBR + TBR”. Support for branches was measured using bootstrap values. These were calculated with NONA and WinClada using 1000 replications, 10 search reps, 1 starting tree per rep, “don’t do max*(TBR)”, and save the consensus of each replication.

We recognize that at least some of the morphological characters may not be independent (Rowland 2003). To explore the effect of inclusion of morphological character on the resulting cladogram, we also ran the analysis with only the combined molecular data using the same commands as above.

Results

The parsimony analysis resulted in a fully resolved cladogram (Fig. 1, length = 4216, CI = 40, RI = 47). Dynastini is monophyletic, though with relatively low support (bs<50), and since only a few outgroups were included, broader conclusions about the monophyly of the group are not here warranted. Within Dynastini, support for most groupings is relatively strong. Two larger monophyletic groups within the tribe are indicated. One includes the African genus *Augosoma*, sister to a clade including the New World genera *Golofa*, *Dynastes* and *Megasoma*, each of which is monophyletic with strong support (bs>85 in each case). Within this group, *Dynastes* and *Megasoma* are sister to each other with strong support (bs=88) and *Golofa* is sister to that clade, also with good support (bs=84). The other large monophyletic group includes all the Palearctic and Oriental genera (bs=90). Within this group, there are two additional larger clades. The first (bs=76) includes *Trypoxylus*, *Xyloscaptes*, *Alloomyrina* and a monophyletic...
Figure 1. Single most parsimonious cladogram resulting from analysis of morphological and molecular data (16S, COII, H3 and arginine kinase) for Dynastini with morphological character state transformations mapped using “fast” (ACCTRAN) optimization in WinClada. Numbers immediately above hashmarks are morphological character numbers. Numbers below hashmarks are character state numbers derived on that branch. Numbers in bold above branches are bootstrap support values. Inset branching diagram is single most parsimonious cladogram from analysis of all data with branch lengths proportionate to number of character state transformations mapped using “fast” optimization.
(bs=89) *Xylotrupes*. The second, more weakly supported clade (bs=53) includes the genera *Haploscapanes*, a monophyletic (bs=99) *Chalcosoma*, *Beckius*, *Eupatorus* and *Pachoryctes* nested within *Eupatorus* Burmeister. Analysis of the combined molecular data alone (without including morphology) resulted in exactly the same topology.

Discussion

Based upon the results of the phylogenetic analyses we propose recognition of three well-supported subtribes, the African and New World clade Dynastina and two Old World clades, Xylotrupina and the new subtribe Chalcosomina (Fig. 2). Further, our analyses found that the west African genus *Augosoma* is sister to the clade containing the American genera *Dynastes*, *Megasoma* and *Golofa* (Figs. 1, 2). This evidence supports the origin of the tribe Dynastini as no later than the early Late Cretaceous, when the South American and African continental tectonic plates separated and thus initiated the vicariant differentiation of their respective biotas (Wegener 1929; Reymert 1969; Berggren and Hollister 1978; Moullade and Guérin 1982). This proposed geologic age of origin of the tribe Dynastini is not inconsistent with the direct, though limited evidence documented in the fossil record of Mesozoic scarabaeid beetles (Krell 2000).

Hope (1837, 1845a, 1845b) and Burmeister (1847) present formal and informal taxonomic treatments regarding the Dynastini. Here we examine these treatments for the inferences they might contain regarding these authors’ concepts of the relationships among the genera of this tribe. Hope (1837, 1845b) recognized MacLeay’s family Dynastidae, and in Hope (1845a) he created the apparent additional family Xylotrupidae, but he did so, perplexingly, in order to accommodate the new genus *Dipelicus*, a pentodonte. One might infer from the latter that either Hope (1845a) perceived *Xylotrupes* to be more closely allied morphologically to *Dipelicus* than it is to *Dynastes*, which seems unlikely; or that Hope wrote *Xylotrupidae*, but should rather have written Xyloryctidae, which seems quite likely from the following evidence. Hope (1837) introduced the new genus *Xyloryctes* at the head of six new pentodonte genera. Then Hope (1845a) introduced the additional new pentodonte genus *Dipelicus*, but enigmatically created the family Xylotrupidae to contain that new genus. Darren Mann obtained the F. W. Hope archives at Oxford University Museum which contain Hope’s manuscript notes from the historical period in question. These revealed that, other than *Xylotrupes*, all of the recognised genera that Hope listed in his notes under Xylotrupidae are oryctines or pentodontines: *Oryctes*, *Oryctoderus*, *Cheiroplatys*, *Tetradosata* (?), *Apothrix* (?) and *Phileurus depressus* - which is a junior synonym of the pentodonte *Semanopterus subcostatus* Laporte (Endrödi 1985: 416-417). Moreover, Hope did not list *Xyloryctes* among these, but did list *Xylotrupes*, and under the latter are listed five trivial names: *juba*, *latipes*, *curtus*, *porcellus*, *ixion* - all of which are names of pentodontines, and none of which

![Figure 2. Summary phylogeny of Dynastini genera, distribution and classification based on results of combined phylogenetic analyses.](image-url)
Rowland and Miller have otherwise ever been associated with Xylotrupes or are now associated with Dynastini. The latter evidence thus is strong that Hope simply mistakenly used the names Xylotrupidae and Xylotrupes in the above publications and manuscript notes where he should have used the names Xyloryctidae and Xyloryctes.

Darren Mann provided the following additional supportive insights regarding Hope's heretofore perplexing use of the family name Xylotrupidae:

“I have been through some of Hope's archives and found the name Xylotrupidae in his own hand, although in the same notebook, on three separate occasions. This usage included several genera beneath, Oryctes, Xylotrupes, etc. So my guess would be that he wanted to create a new 'group name' for the genus Dipelicus and just lost track of what was Xyloryctes and Xylotrupes more a lapsus memoriae than a lapsus calami.”

Moreover, the several foregoing facts suggest that considerable caution should be used in inferring Hope's concepts of relationships among the genera of the Dynastini by his use of the family names Dynastidae (Hope 1837, 1845b) and Xylotrupidae (Hope 1845a). Regarding formal nomenclature, whether or not Hope (1845a) mistakenly used the name Xylotrupidae rather than Xyloryctidae does not affect the status of the name Xylotrupidae according to the ICZN (pers. comm. Andrew Smith).

Burmeister (1847) segregated Dynastidae into the two informal categories “Dynastidae lasiopygi” containing Golofa, Theogenes and Dynastes; and “Dynastidae liparopygi” containing Augosoma, Xylotrupes, Eupatorus, Chalcosoma and Megasoma; and of which he wrote: [p. 246] “Dynastidae liparopygi. Sie bewohnen die westliche halbkugel und zerfallen in drei natürliche Gattungen.”; and [pp. 262-263]

Table 1. Taxa and specimens used in phylogenetic analysis of Dynastini. JMRC = JM Rowland Collection, MSBA = Museum of Southwestern Biology, University of New Mexico.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Code</th>
<th>Voucher deposition</th>
<th>Extracted tissue (see footnotes)</th>
<th>GenBank #</th>
<th>(COI/16S/H3/ArgKin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyphylla</td>
<td>decemlineata</td>
<td>KBMC-PDE2</td>
<td>JMRC</td>
<td>1</td>
<td>-/JX994048/-/JX994005</td>
<td></td>
</tr>
<tr>
<td>Cotinus</td>
<td>mutabilis</td>
<td>KBMC-CMU1</td>
<td>JMRC</td>
<td>1</td>
<td>JX994068/JX994045/JX994025/JX994004</td>
<td></td>
</tr>
<tr>
<td>Oritabas</td>
<td>clunalis</td>
<td>KBMC-OCL1</td>
<td>JMRC</td>
<td>1</td>
<td>JX994069/JX994046/-/-</td>
<td></td>
</tr>
<tr>
<td>Cyclocephala</td>
<td>sp.</td>
<td>KBMC-OGS</td>
<td>MSBA</td>
<td>2</td>
<td>JX994070/JX994047/-/-</td>
<td></td>
</tr>
<tr>
<td>Ingroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alloymrina</td>
<td>pfeifferi</td>
<td>KBMC-APF2</td>
<td>JMRC</td>
<td>1</td>
<td>JX994049/JX994026/JX994006/JX993994</td>
<td></td>
</tr>
<tr>
<td>Augosoma</td>
<td>centaurus</td>
<td>KBMC-ACE5</td>
<td>JMRC</td>
<td>3</td>
<td>JX994050/JX994027/JX994007/JX993995</td>
<td></td>
</tr>
<tr>
<td>Beckius</td>
<td>beccarii</td>
<td>KBMC-EBE1</td>
<td>JMRC</td>
<td>2</td>
<td>JX994055/JX994032/JX994012/-/-</td>
<td></td>
</tr>
<tr>
<td>Chalcosoma</td>
<td>atlas</td>
<td>KBMC-CAT1</td>
<td>JMRC</td>
<td>2</td>
<td>JX994051/JX994028/JX994008/-/-</td>
<td></td>
</tr>
<tr>
<td>Chalcosoma</td>
<td>caucasus</td>
<td>KBMC-CCA5</td>
<td>JMRC</td>
<td>3</td>
<td>JX994052/JX994029/JX994009/JX993996</td>
<td></td>
</tr>
<tr>
<td>Dynastes</td>
<td>granti</td>
<td>KBMC-DGR1</td>
<td>JMRC</td>
<td>1</td>
<td>JX994053/JX994030/JX994010/JX993997</td>
<td></td>
</tr>
<tr>
<td>Dynastes</td>
<td>ityus</td>
<td>KBMC-DTI1</td>
<td>JMRC</td>
<td>1</td>
<td>JX994054/JX994031/JX994011/-/-</td>
<td></td>
</tr>
<tr>
<td>Eupatorus</td>
<td>birmanicus</td>
<td>KBMC-EBI1</td>
<td>JMRC</td>
<td>2</td>
<td>JX994056/JX994033/JX994013/-/-</td>
<td></td>
</tr>
<tr>
<td>Eupatorus</td>
<td>gracilicornis</td>
<td>KBMC-EGR1</td>
<td>JMRC</td>
<td>2</td>
<td>JX994071/-/-/-/-</td>
<td></td>
</tr>
<tr>
<td>Golofa</td>
<td>clavigera</td>
<td>KBMC-GCL5</td>
<td>JMRC</td>
<td>3</td>
<td>JX994057/JX994034/JX994014/JX993998</td>
<td></td>
</tr>
<tr>
<td>Golofa</td>
<td>pizarro</td>
<td>KBMC-GPI3</td>
<td>JMRC</td>
<td>3</td>
<td>JX994058/JX994035/JX994015/-/-</td>
<td></td>
</tr>
<tr>
<td>Golofa</td>
<td>porteri</td>
<td>KBMC-GPO1</td>
<td>JMRC</td>
<td>3</td>
<td>JX994059/JX994036/JX994016/-/-</td>
<td></td>
</tr>
<tr>
<td>Haploascapanes</td>
<td>barbarossa</td>
<td>KBMC-HBA2</td>
<td>JMRC</td>
<td>1</td>
<td>JX994060/JX994037/JX994017/JX993999</td>
<td></td>
</tr>
<tr>
<td>Megasoma</td>
<td>acteon</td>
<td>KBMC-MAC5</td>
<td>JMRC</td>
<td>3</td>
<td>JX994061/JX994038/JX994018/JX994000</td>
<td></td>
</tr>
<tr>
<td>Megasoma</td>
<td>thersites</td>
<td>KBMC-MTH1</td>
<td>JMRC</td>
<td>2</td>
<td>JX994062/JX994039/JX994019/-/-</td>
<td></td>
</tr>
<tr>
<td>Pachyoryctes</td>
<td>solidus</td>
<td>KBMC-PSO2</td>
<td>JMRC</td>
<td>2</td>
<td>JX994063/JX994040/JX994020/-/-</td>
<td></td>
</tr>
<tr>
<td>Trypoxylus</td>
<td>dichotom</td>
<td>KBMC-TDI3</td>
<td>JMRC</td>
<td>3</td>
<td>JX994064/JX994041/JX994021/-/-</td>
<td></td>
</tr>
<tr>
<td>Xyloscapes</td>
<td>davidis</td>
<td>KBMC-XDA2</td>
<td>JMRC</td>
<td>1</td>
<td>JX994065/JX994042/JX994022/JX994001</td>
<td></td>
</tr>
<tr>
<td>Xylotrupes</td>
<td>australicus</td>
<td>KBMC-XAD1</td>
<td>JMRC</td>
<td>1</td>
<td>JX994066/JX994043/JX994023/JX994002</td>
<td></td>
</tr>
<tr>
<td>Xylotrupes</td>
<td>meridionalis</td>
<td>KBMC-XME5</td>
<td>JMRC</td>
<td>1</td>
<td>JX994067/JX994044/JX994024/JX994003</td>
<td></td>
</tr>
</tbody>
</table>

1Collected as live adults, then frozen or placed in EtOH, and muscle tissue dissected into absolute EtOH.
2Muscle tissue isolated from dead, dried adults, muscle tissue dissected dry into sealable vials.
3Procured as frozen larvae, muscle tissue dissected into absolute EtOH.

have otherwise ever been associated with Xylotrupes or are now associated with Dynastini. The latter evidence thus is strong that Hope simply mistakenly used the names Xylotrupidae and Xylotrupes in the above publications and manuscript notes where he should have used the names Xyloryctidae and Xyloryctes. Darren Mann provided the following additional supportive insights regarding Hope’s heretofore perplexing use of the family name Xylotrupidae: “I have been through some of Hope’s archives and found the name Xylotrupidae in his own hand, although in the same notebook, on three separate occasions. This usage included several genera beneath, Oryctes, Xylotrupes, etc. So my guess would be that he wanted to create a new ‘group name’ for the genus Dipelicus and just lost track of what was Xyloryctes and Xylotrupes more a lapsus memoriae than a lapsus calami.” Moreover, the several foregoing facts suggest that considerable caution should be used in inferring Hope’s concepts of relationships among the genera of the Dynastini by his use of the family names Dynastidae (Hope 1837, 1845b) and Xylotrupidae (Hope 1845a). Regarding formal nomenclature, whether or not Hope (1845a) mistakenly used the name Xyloryctidae rather than Xyloryctidae does not affect the status of the name Xylotrupidae according to the ICZN (pers. comm. Andrew Smith).

Burmeister (1847) segregated Dynastidae into the two informal categories “Dynastidae lasiopygi” containing Golofa, Theogenes and Dynastes; and “Dynastidae liparopygi” containing Augosoma, Xylotrupes, Eupatorus, Chalcosoma and Megasoma; and of which he wrote: [p. 246] “Dynastidae liparopygi. Sie bewohnen die westliche halbkugel und zerfallen in drei natürliche Gattungen.”; and [pp. 262-263]
Table 2. Taxa and morphological character states coded for phylogenetic analysis of Dynastini. Morphological characters and code states are described in the Materials and Methods on pp. 2-3.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Character States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augosoma centaurus</td>
<td>000000000 11111111</td>
</tr>
<tr>
<td>Golofa clavigera</td>
<td>123456789 01234567</td>
</tr>
<tr>
<td>Golofa pizarro</td>
<td>100111010 01000110</td>
</tr>
<tr>
<td>Golofa porteri</td>
<td>000111010 01000101</td>
</tr>
<tr>
<td>Dynastes granti</td>
<td>000111010 01000101</td>
</tr>
<tr>
<td>Dynastes tityus</td>
<td>000111110 01000101</td>
</tr>
<tr>
<td>Megasoma thersites</td>
<td>000111110 11011000</td>
</tr>
<tr>
<td>Megasoma actaeon</td>
<td>1010-001 01101110</td>
</tr>
<tr>
<td>Trypoxylus dichotom</td>
<td>011011000 01000110</td>
</tr>
<tr>
<td>Xyloscaptes davidis</td>
<td>011011000 01011110</td>
</tr>
<tr>
<td>Allomyrina pfeifferi</td>
<td>010011101 11011110</td>
</tr>
<tr>
<td>Xylotrapes australicus darwinia</td>
<td>110011000 01011110</td>
</tr>
<tr>
<td>Xylotrapes meridionalis</td>
<td>00010-001 01000001</td>
</tr>
<tr>
<td>Haplocapanes barbarossa</td>
<td>00010-001 01000001</td>
</tr>
<tr>
<td>Chalcosoma atlas</td>
<td>00010-001 01000001</td>
</tr>
<tr>
<td>Chalcosoma caucasus</td>
<td>00010-001 01000001</td>
</tr>
<tr>
<td>Beckius beccarii</td>
<td>00000-001 01000001</td>
</tr>
<tr>
<td>Eupatorus gracilicornis</td>
<td>00000-001 11000000</td>
</tr>
<tr>
<td>Eupatorus birmanicus</td>
<td>00000-001 11000000</td>
</tr>
<tr>
<td>Pachyoryctes solidus</td>
<td>00000-001 11000000</td>
</tr>
</tbody>
</table>

Arrow (1908) revised the genus Eupatorus to contain E. hardwickei, E. gracilicornis, E. birmanicus, and E. siamensis by synonymizing Alcidosoma which Laporte (1867) had created for A. siamensis. This arrangement was followed in Endrödi (1976, 1985). However, our results indicate that under this concept Eupatorus is not monophyletic because Pachyoryctes solidus is nested among Eupatorus species (Fig. 1). That is, E. gracilicornis is sister to the clade containing E. birmanicus and Pachyoryctes solidus, and the latter three species form a clade that is sister to B. beccarii. To improve the classification with respect to the latter, we follow Dechambre (1992) in which E. beccarii was transferred to Beckius Dechambre. Our morphological and biogeographic observations are consistent with this approach, as are the notations, if not the actions, of Arrow (1908), Gestro (1876), Laporte (1867), Endrödi (1976) and Dechambre (1992). Further, we compared non-type specimens of E. siamensis, E. birmanicus, E. hardwickei and E. gracilicornis and found that E. siamensis and E. birmanicus are similar in the following respects: 1) they have dorsal pronotal horns which are larger than the basolateral horns, 2) their pronotal integument is rugose and without well-defined pits and 3) they are not known to express tan-colored individuals. Arrow (1908) found E. siamensis and E. birmanicus to have “curiously different sexual armature c [but] which are so closely alike in all other respects.” We found that E. hardwickei and E. gracilicornis differ from E. siamensis and E. birmanicus in having: 1) dorsal pronotal horns that are smaller than the basolateral horns, 2) polished pronotal integument with well-defined pits and 3) predominately tan-colored individuals. Further, in spite of Arrow (1908) placing P. solidus in its own monotypic genus relative to E. siamensis and E. birmanicus, these three species display a pattern of character states from which it is not difficult to imagine that P. solidus could be sister to one and not both E. siamensis or E. birmanicus: P. solidus is compressed lengthwise in general body proportions compared to E. siamensis and E. birmanicus; the pronotal dorsolateral horns are strong in E. siamensis and E. birmanicus, weak in P. solidus; pronotal anterolateral apices are strong horns in E. siamensis and E. birmanicus, weak horns in P. solidus; proleg sexual dimorphism is strong in E. siamensis and E. birmanicus, weak in P. solidus; mandible incisors are blunt and distinctly laterally lobed in E. siamensis and E. birmanicus,
Table 3. Primers used for amplification and sequencing of gene fragments for Dynastini specimens.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer</th>
<th>Direction</th>
<th>Sequence (5'→3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S</td>
<td>16S1</td>
<td>For</td>
<td>CGCCCTGTGTTATCAAAAACAT</td>
</tr>
<tr>
<td></td>
<td>16S2</td>
<td>Rev</td>
<td>CTCGGTTTTGAACTCAGATCA</td>
</tr>
<tr>
<td>COI</td>
<td>9b2</td>
<td>Rev</td>
<td>GTACCTTGCTTTCCAGTCATCTWATG</td>
</tr>
<tr>
<td></td>
<td>F-luc2</td>
<td>For</td>
<td>TCTAATAGGCAGATTAGTGC</td>
</tr>
<tr>
<td></td>
<td>R-lys3</td>
<td>Rev</td>
<td>GAGACCACTACTTGCTTTCACT</td>
</tr>
<tr>
<td></td>
<td>Ef14_Cho10</td>
<td>Rev</td>
<td>ACRGCVACKTYTGCHCKCATGTC</td>
</tr>
<tr>
<td></td>
<td>For3</td>
<td>Rev</td>
<td>GGYGACAAYGTGTTTYYAY</td>
</tr>
<tr>
<td>H3</td>
<td>Haf4</td>
<td>For</td>
<td>ATGGCTCGTACCAACGACGC</td>
</tr>
<tr>
<td></td>
<td>Har4</td>
<td>Rev</td>
<td>ATATCCTTGGCCATGATGTC</td>
</tr>
<tr>
<td>ArgKin</td>
<td>AK168F5</td>
<td>For</td>
<td>CAGGTTTGGGARAAAYCAGGAYTGY</td>
</tr>
<tr>
<td></td>
<td>AK939R5</td>
<td>Rev</td>
<td>GCCNCCYTCRGCGTCRGTGTYT</td>
</tr>
<tr>
<td></td>
<td>AK183F5</td>
<td>For</td>
<td>GATTCTGGAGTGGNATYTAYGNCYYGAY</td>
</tr>
<tr>
<td></td>
<td>AK933R5</td>
<td>Rev</td>
<td>CCCCAGCCTTTCGTGTYTCC</td>
</tr>
</tbody>
</table>

1Simon et al. (1994); 2Whiting (2002); 3Danforth et al. (1999); 4Colgan et al. (1998); 5Wild and Maddison (2008).

sharp and indistinctly laterally lobed in P. solidus; prosternal apex is broadly acuminate and orthogonal in E. birmanicus, truncate and reflected inward in E. siamensis and P. solidus; anterodorsal margin of phallobase is sharply defined with midline furrow extending to margin in E. birmanicus and P. solidus, less defined in E. siamensis and midline furrow vague, not extending to margin; paramere blades are short in E. birmanicus and P. solidus, long and attenuate in E. siamensis; paramere orifice is wide and round in E. birmanicus and P. solidus, narrow and elliptical in E. siamensis. It is indeed notable that the male of P. solidus has much reduced pronotal armature compared to siamensis and birmanicus, but it is also observed that the largest males of P. solidus have a similar pronotal armature to the small males of E. siamensis. Moreover, large males of P. solidus appear to express the pronotal armature phenotype typical of the subordinate males of ancestral lineages of Eupatorus. This seems also to parallel the expression in P. solidus of an essentially female proleg phenotype. Relatively rapid phylogenetic switching between and among such intraspecific alternative developmental phenotypes within conditionally polymorphic lineages appears to be commonplace in the Dynastini (Rowland 2003) and other groups of scarabaeid beetles (Rowland and Emlen 2009), and these phylogenetic events can produce considerable difficulties for the taxonomists of affected groups (West-Eberhard 2003). Thus, the questions regarding Eupatorus framed above might best be addressed with robust phylogenetic methods including molecular analyses that incorporate all of the taxa concerned, and consulting the necessary type specimens. According to Endrödi (1976) the type of A. siamensis is lost, however Endrödi designated a neotype which he deposited in “meiner Sammlung”, and which is now possibly in the Hungarian Natural History Museum, Budapest. Endrödi (1976) further reported that the type specimen of E. birmanicus is in The Natural History Museum, London, as is the type of E. gracilicornis and the lectotype of P. solidus. The type of Dynastes hardwickei is in the Oxford University Museum.

Systematics

Tribe DYNASTINI MacLeay, 1819
Original spelling and citation: Dynastidae MacLeay, 1819: 64
Type genus: Dynastes MacLeay, 1819: 22

Subtribe DYNASTINA MacLeay, 1819, NEW STATUS
Original spelling and citation: Dynastidae MacLeay, 1819: 64
Type genus: Dynastes MacLeay, 1819: 22
Synonym: Megasominae Swainson, 1840: 210 [stem Megasomat-]. Type genus: Megasoma Kirby, 1825. Family-group name attributed to Imhoff (1856) in A. B. T. Smith (2006: 175); incorrect original stem formation, not in prevailing usage.
Type genus: Megasoma Kirby, 1825: 566
Subtribe XYLOTRUPINA Hope, 1845, NEW STATUS
Original spelling and citation: Xylotrupidae, Hope 1845: 7
Type genus: *Xylotrupes* Hope, 1837: ix

Subtribe CHALCOSOMINA, NEW SUBTRIBE
Original spelling and citation: Chalcosomina Rowland and Miller, 2012
Type genus: *Chalcosoma* Hope, 1837: 86

Tribe DYNASTINI MacLeay

Description. Endrödi (1985) constitutes the most recent comprehensive taxonomic review of the Dynastinae, in which he provides the following morphological description of the Dynastini relative to the other tribes of the subfamily: “This tribe includes the biggest species of the whole family Melolonthidae. Most species display very strong sexual dimorphism. Horns of males often very long, head and pronotum [horns] in females usually almost absent. Fore legs of males mostly longer than in females. Also elytra in many species different: in male smooth, in female strongly sculptured. Mandibles mostly incised on apex, outer side straight or lobed. Antennae 10-jointed, club in both sexes short. Form of prosternal process highly variable. Propygidium either with or without a stridulatory area. Claw-joint of anterior tarsi strongly thickened only in Dynastes neptunus Quensel and D. satanas Moser; apex of basal-joint of hind tarsi rarely spiniformly produced.”

Subtribe DYNASTINA MacLeay

with little or no anastomosing sculpture in Megasoma and Golofa. Prolegs: Sexually dimorphic in Augosoma, Dynastes and some Megasoma and Golofa; sexually monomorphic in some small Megasoma and Golofa. Elytra of female: Dorsal integument essentially as in male in Augosoma and Megasoma and some Dynastes and Golofa, significantly different from male in some Dynastes and Golofa. Dorsal integument color: Uniformly dark red/brown/black in Augosoma, some Dynastes and Megasoma, colored in some Dynastes and Golofa. Dorsal pilosity: No species conspicuously hirsute in Augosoma and Dynastes, one species conspicuously hirsute in Golofa, several species conspicuously hirsute in Megasoma. Paramere dorsal conjunction: Without interdigitating teeth in Augosoma, Dynastes and Golofa, with interdigitating teeth in Megasoma. Paramere apex: Lateral contours converging inward. Paramere apex setation: Long and conspicuous. Raspulæ: With enlarged, sclerotized plate in Augosoma and spines in some Golofa, without such structures in Dynastes, Megasoma and most Golofa.

Subtribe XYLOTRUPINA Hope

Included genera. Allomyrina Arrow, Xylotrupes Hope, Trypoxylus Minck, Xyloscaptes Prell.

Subtribe CHALCOSOMINA, New Subtribe

Included genera. Haploscapanes Arrow, Chalcosoma Hope, Beckius Dechambre, Eupatorus Burmeister, Pachyoryctes Arrow.

Key to subtribes and genera of Dynastini

The key is based on the morphology of males that fully express the secondary sexual traits.

1. Apex of cephalic horn acuminate (Augosoma, Dynastes, Golofa, Haploscapanes, Eupatorus, Beckius, Pachyoryctes, Chalcosoma) or bifurcate (Allomyrina, Xylotrupes, Trypoxylus, Xylocephalites, Megasoma); if acuminate then pronotum has a medial horn (Augosoma, Dynastes, Golofa) or is essentially hornless (female-like Golofa); if essentially hornless then anterolateral pronotal integument is immaculate to punctate (Golofa), never cristate and distinctly anastomosing (as in Haploscapanes), and mandibular incisors are bidentate (with rare exceptions); lateral contours of paramere apex converging inward (Dynastina) or parallel to diverging outward (Xylotrupina) 2 (Dynastina MacLeay and Xylotrupina Hope)

— Apex of cephalic horn acuminate (Haploscapanes, Eupatorus, Beckius, Pachyoryctes, Chalcosoma); pronotum without a medial horn (Haploscapanes, Eupatorus, Beckius, Pachyoryctes, Chalcosoma). or with paired more or less medial horns (C. mollenkampi, E. birmanicus), or with more or less lateral horns (C. atlas, C. caucasus, Beckius, all other Eupatorus), or with
horn-like transverse lateral carinae (*Pachyoryctes*); if pronotum is essentially female-like, without obvious male ornaments, then anterolateral pronotal integument is anastomosing and cristate (*Haploscapanes barbarossa*, *H. inermis*); lateral contours of paramere apex converging inward (except *Beckius*) and apex setation absent or nearly so; mandibular incisors adenticulate

2(1). Cephalic horn apex acuminata (*Augosoma*, *Dynastes*, *Golofa*) or bifurcate (*Megasoma*); if bifurcate then mandibular incisor denticles diverge strongly, usually at least 45°; mesal pronotal horn or boss present (*Augosoma*, *Dynastes*, most *Megasoma*, most *Golofa*) or absent (female-like *Megasoma* and *Golofa*); if horn or boss absent then mandibular incisor denticles diverge strongly as above (*Megasoma*) and paramere blades are on a similar plane as or below that of paramere orifice (*Megasoma*, *Golofa*); pronotal medial horn or medial boss usually with dense ventral pilosity; lateral contours of paramere apex converging inward; Africa, America

3 (Dynastina MacLeay)

Cephalic horn bifurcate; mandibular incisor adenticulate (*Trypoxylus*, *Xyloscaptes*, *Allomyrina*, *Xylotrupes florensis*) or denticulate and denticles diverge at most 30° (other *Xylotrupes*); pronotal horn lacking dense pilosity (*Xylotrupes*, *Trypoxylus*, *Xyloscaptes*) except when entire dorsal surface of body is densely hirsute (*Allomyrina*); lateral contours of paramere apex parallel or diverging outward; Asia

6 (Xylotrupina Hope)

3(2). Pronotum with ventrolateral undercut carinae; mesal pronotal horn without ventral dense pilosity; anterolateral pronotal integument with anastomosing, cristate sculpture; Africa

Augosoma Burmeister

Pronotum without such ventrolateral carinae; mesal pronotal horn usually with ventral dense pilosity; anterolateral pronotal integument without anastomosing, cristate sculpture 4

4(3). Cephalic horn apex bifurcated to form two lateral tines; mandibular incisor denticles usually diverge at least 45°; anterior margin of clypeus broadly emarginate, forming two widely separated denticles; America

Megasoma Kirby

5(4). Relative size of mandibular incisor denticles subequal; when a pronotal horn present then angle between posterior pronotal margin and apex of pronotal horn at least 30° (may be up to 80°); in species with pronotal horn, cephalic horn has weak to strongly serrated lateral margins; cephalic horn rarely with multiple medial denticles (*G. eacus*, *G. spatha*); pronotal horn without laterally paired accessory horns; America

Golofa Hope

Relative size of mandibular incisor denticles varies from strongly positive to strongly negative; angle between posterior pronotal margin and apex of pronotal horn at most 10°; cephalic horn without serrated dorsolateral margins; with one or more dorsomedial denticles (often weak or obscure in *D. tityus*); pronotal horn with laterally paired accessory horns (except *D. satanas*); America

Dynastes Kirby

6(2). Plane of paramere blades strongly angled toward paramere orifice, or parameres with strong frontal notch (*X. florensis*); with two strongly sclerotized raspulae of similar structure, or if only one raspula then basal metatarsomere dorsally strongly acuminata (*X. florensis*); pronotal horn with basolateral carinae [observed in small taxa] or, rarely, basolateral denticles (*X. florensis*); pronotal horn apex extends beyond cephalic horn apex in large species; Asia

Xylotrupes Hope

Plane of paramere blades essentially same as or below that of paramere orifice; with at least one sclerotized raspular spine, if two spines then they are grossly dissimilar in structure; pronotal horn without basolateral carinae or denticles; pronotal horn apex never extends to cephalic horn apex

7
Small species, at most 40mm in total length; dorsal integument heavily hirsute; protarsal claws distinctly asymmetrical; Asia ... Allomyrina Arrow

Large species, at least 50mm and up to 85mm in total length; dorsal integument nearly immaculate or finely hirsute; protarsal claws symmetrical or essentially so ... 8

Cephalic horn very long (~ 25mm), apex divided into four lateral tines; pronotal horn short, narrow; Asia ... Trypoxylus Minck

Cephalic horn of moderate length (~ 15mm), apex bifurcated into two lateral tines and with two lateral denticles at midlength; pronotal horn stout, short; Asia Xyloscaptes Prell

Pronotum with one pair of dorsolateral horns and a basomedial horn directed horizontally over base of cephalic horn; Asia ... Chalcosoma Hope

Pronotum without horns or with one or two pairs of horns, but without a basomedial horn directed over base of cephalic horn ... 10

Anterior margin of clypeus nearly entire, not forming denticles; pronotum simply convex (H. inermis), or with one pair of lateral bosses or incipient horns (H. barbarossa), or with well-developed lateral horns (H. australicus); anterior and basolateral pronotal integument with strong, anastomosing, cristate sculpture; dorsal integument uniformly colored, pronotum and elytra reddish brown; Asia ... Haploscapanes Arrow

Anterior margin of clypeus strongly and narrowly emarginate, forming two conspicuous denticles; pronotum with one pair of dorsolateral horns (Beckius), or dorsolateral carinae (Pachyoryctes), or with two pairs of horns (E. gracilicornis, E. siamensis, E. birmanicus, most E. hardwickei), or one pair of basolateral horns (some E. hardwickei); anterior and basolateral pronotal integument sparsely punctate, without anastomosing, cristate basolateral sculpture; dorsal integument bicolored, pronotum black or nearly so, elytra reddish brown to yellowish orange ... 11

Pronotum with a pair of transverse dorsolateral carinae; prothoracic legs essentially sexually monomorphic; elytra dark reddish brown; Asia .. Pachyoryctes Arrow

Pronotum with one or two pairs of lateral horns; prothoracic legs decidedly sexually dimorphic; elytra yellowish orange or reddish brown ... 12

Pronotum with two pairs of horns; Asia ... Eupatorus Burmeister (E. gracilicornis, E. birmanicus, E. siamensis, most E. hardwickei)

Pronotum with one pair of horns .. 13

Pronotal horns basolateral; lateral contours of paramere apex converging inward; Asia ... Eupatorus Burmeister (Himalayan E. hardwickei)

Pronotal horns dorsolateral and with marginal spines; lateral contours of paramere apex diverging outward, nearly circular; Asia ... Beckius Dechambre

Acknowledgments

We thank Heidy Hopkins and Hans Weeks for their considerable efforts in sequencing many challenging specimens. Specimens and associated data were provided by Gavin Dally, Dan Sundberg, Justin Schofer, Jen-Pan Huang, Carl Wilhelm, William Wallin, Seul-Ma-Ro Hwang, Beverly Adams, Thomas Moisi, Daniel Fagre-Garcia, Hu Wei, Charles Dewhurst, Wayne Hsu, Joaquim Willers and Edward Riley. Critical logistic support was provided by Prathapan Divakaran. Chris Marshall, Jiri Zidek and Paul Skelley reviewed the manuscript and provided valued advice. Marty Schlabach researched ancient literature at Cornell University Library. Darren Mann explored the F.W. Hope archives at Oxford University Museum. Joaquim Willers provided advice on the work of H. Burmeister. Andrew Smith provided advice on nomenclature. Portions of this project were funded by United States National Science Foundation grant #DEB-0845984 (K. B. Miller, PI).
Literature Cited

Goloboff, P. 1995. NONA. Published by the author; Tucumán, Argentina.

Hope, F. W. 1845a. On the entomology of China, with descriptions of the new species sent to England by Dr. Cantor from Chusan and Canton. Transactions of the Entomological Society of London 4: 4-17.

Smith, A. B. T. 2006. A review of the family-group names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification. Coleopterists Society Monograph No. 5: 144-204.

Received August 29, 2012; Accepted October 12, 2012